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We use a dynamic mean-field approximation to study the spinodal decomposition of a mixture
of monomers and polymers. The system is modeled on a two-dimensional square lattice. A local
mean-field concentration of polymers is employed in local dynamics in which possible switching of
monomer and polymer on next-nearest-neighboring sites takes place according to the standard Monte
Carlo updating rule. A dynamic equation for the local density is obtained, and spinodal curves are
produced analytically for various degrees of polymerization by analyzing the stability of the uniform
solution of the equation. We also determine the most unstable mode with respect to the uniform

solution.

PACS number(s): 61.25.Hq, 82.60.Lf, 05.50.+q, 64.75.4+g

I. INTRODUCTION

Phase separation in binary mixtures of small molecules
and polymers is an interesting thermodynamic phe-
nomenon involving a loss of stability of the mixed state
(1,2]. Flory-Huggins mean-field theory [3,4], which is
based on a combinatorial evaluation of the entropy of
mixtures, has been successful in describing properties
such as the coexistence curve (characteristic of equilib-
rium behavior) and spinodal decomposition (which re-
lates to local and nonequilibrium behavior). In questions
concerned with dynamic aspects of the approach to equi-
librium, Cahn-Hilliard theory [5,6] has led to successful
predictions about the initial pattern selection in the spin-
odal regime. These studies are all based on the thermal
properties of the simplest possible mean-field approxima-
tion to the free energy of the system.

The general problem of phase separation is made more
difficult by the fact that the dynamics used to study
such behavior requires conservation of the order param-
eter. This order-parameter-conserved dynamics (an ex-
ample being that introduced by Kawasaki [7]) is much
more difficult to handle than that of a nonconserved one
(for example, Glauber dynamics [8]). This is particu-
larly true for spinodal decomposition, which is a concept
whose very definition rests on the approximation scheme
in which the local concentration is a well-defined quan-
tity. As a consequence, even for a binary mixture, only
a few exact results are available to describe spinodal de-
composition in specific models, and most of these are
restricted to zero temperature in one dimension [9,10]
or on a Bethe lattice [11]. There are, however, a num-
ber of approximate results from a dynamical approach to
phase separation [12,13]. In Ref. [12], Gobron introduced
a pseudo-one-dimensional lattice gas model and applied
an approximate master equation for the configurational
distribution function to study dynamically the proper-
ties of spinodal decomposition of a binary mixture. His
approach is not readily generalizable to the case of a mix-
ture containing polymers, and has the apparent failing of
yielding a spurious phase separation in one dimension.

In this paper, we introduce a more realistic two-
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dimensional lattice model to describe a mixture of
monomers and polymers. We then use a dynamic mean-
field approximation, which generalizes an approximation
employed in the study of random Ising spin systems [14],
to study both the spinodal decomposition and the initial
pattern selection of the system by identifying the mode
that is most unstable with respect to the uniform phase.
The degree of polymerization, N, of the polymer in the
mixture enters the formalism in a natural way. The pa-
per is organized as follows: In Sec. II the model and a
local switching dynamics are introduced. In Sec. III the
dynamic mean-field approximation is employed to derive
the dynamic equation for the local density of polymer.
The stability is then analyzed and the spinodal curves
produced in Sec. IV, and some conclusions are presented
in Sec. V.

II. THE MODEL
AND THE LOCAL SWITCHING DYNAMICS

We consider a mixture of monomers of type A and
chain polymers of degree of polymerization N (> 2) com-
posed of monomers of type B. The molar fraction of B
monomers is assumed to be p. To study the spinodal
decomposition of the mixture analytically, we introduce
a lattice model, and for reasons of simplicity consider
only a two-dimensional square lattice. Each site of the
square lattice is occupied by one and only one unit of
either type A or type B. A polymer chain is then repre-
sented by a sequence of monomers B, which are consecu-
tively connected as nearest neighbors. A configuration of
a polymer of degree eight on a square lattice is shown in
Fig. 1(a). For each nearest-neighbor contact between A
and B there is an energy cost of €. A state of the mixture
is then represented by the corresponding configuration of
the lattice site occupancy by 4 and B. This is the lattice
model of the mixture.

Next we introduce the dynamics that determines the
time evolution of the system. A change of configuration
is determined by the local switching, if allowed, of a pair
of next-nearest-neighbor monomers of different types, ac-
cording to the standard Monte Carlo updating rule. Let
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FIG. 1. This illustrates the changing of configurations by
local switchings. Switching (a) to (b) is between a monomer
of type A and a monomer of type B located at the end of a
polymer chain. In switching (c) to (d) the monomer of type
B is not located at a terminal position in the polymer chain.

E; (E;) be the energy of the configuration before (after)
switching. The updating rule then says that the probabil-
ity for an allowed switching to occur is unity if Ef < Ej,
and is e PEs—Ei) if E; > E;, where 3 is the inverse
temperature. Because of the presence of bonds in the
polymer chains, not every pair of next-nearest-neighbor
monomers of different types are switchable. A switching
is possible only if the detailed conformation of the poly-
mer chain containing the B monomer permits the chain
to retain its integrity after switching. The only two pos-
sible types of switching process are those shown in Fig. 1:
Switching I [(a)—(b)] and Switching II [(c)—(d)].

It would now be possible to base a Monte Carlo simula-
tion on the above model and dynamics. However, we take
the alternative route of seeking an analytical solution to
a mean-field theory based on this model.

III. DYNAMIC MEAN-FIELD APPROACH

Our first approximation is to assume, at time t, a local
mean-field-like concentration, represented by ¢(z,y;t),
of polymer at site (x,y), or, equivalently, the probability
of finding a polymer segment B located at site (z,y) at
time t. The time evolution of ¢(z,y;t) is, according to
the dynamics described in Sec. II, given as (for N > 2)

8 2
e@uit)= & gl: Pi(p; p; 1)

v (1 - 1%) > Pu(e; o) 1

agy

where Pi(p; p; ax) is the contribution from a switching o
of type I and the sum is over all possible switchings of
type I, and similarly for Pii(p;p; o). (We will say more
about these contributions and use a diagram to represent
each of them later.) Here u is a Boltzmann factor and is
given by

p=e"Pc (2)
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Several points require clarification about Eq. (1).
First, the common factors Z and (1 — #) before the
sum are mean-field countings of the probability that the
chosen monomer of type B is located at one end or in the
middle, respectively, of a polymer chain. For a mixture
of monomers and dimers having N = 2, the second term
vanishes, as is to be expected. Second, each sum con-
tains both positive [for a case of “switching in,” i.e. the
site (z,y) chosen is occupied by a monomer of type A be-
fore a switching] and negative (“switching out”) contribu-
tions. Third, since each site has four next-nearest neigh-
bors, each sum contains all contributions from all possi-
ble switchings taking place between site (z,y) and its four
next-nearest neighbors. Fourth, because the constrains
of intrachain bonds apply to the polymer B, whether
a switch (type I or II) is possible between a given pair
of next-nearest-neighbor monomers of different types de-
pends on the configuration of the occupancy of the near-
est neighbors of the chosen site occupied by B, but not
on that occupied by A [see Figs. 2(a) and (b)]. For exam-
ple, Fig. 2(a) can contribute to both switching I and II,
while Fig. 2(b) can only have a contribution to switching
L

Finally, we note that each individual contribution can
be represented by a diagram. A complete list of all the
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FIG. 2. (a)and (b) demonstrate two sets of configurations
of the occupations of a pair of next-nearest neighbors (site 0
and site 7) and their nearest neighbors (sites 1 to 6) that
can contribute to the time evolution of the local density of
polymer at the chosen site 0 [i.e., site (z,y)]. Black and white
dots represent sites occupied by monomers of type A and
type B (that belonging to a polymer), respectively. A triangle
indicates the site that can be occupied by a monomer of either
type. (c) and (d) are two typical configurations belonging to
the sets (a) and (b), respectively. Their contributions to the
time evolution of the local density at site 0 are given in the
text.
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diagrams is rather lengthy, and so only two typical dia-
grams are shown in Figs. 2(c) and (d). Their correspond-
ing contributions are for Fig. 2(c)

Pi(p;p50a1) = (+) (;) (PoP1P203Papspepr) (1) (3)
and

1
Pri(p; p; 001) = (+) (g) (PoP1P203Papspepr) (1)
(4)
and for Fig. 2(d)

Pi(p;psa1) = (+)(1) (PoP19p203P4PsPepr) (1) (5)

where ¢;, with 7 = 0,1...,7, is an abbreviation for the
concentration ¢(x,y;t) at site j, and ; = 1 — ¢;. To
clarify these expressions [Eq. (3)-Eq. (5)], we notice that
each P is composed of four factors, each of which is en-
closed in a pair of parentheses. The first factor is the
sign which determines whether a switching is a “switch-
ing in” or “switching out”. It is positive if site 0 is occu-
pied by an A monomer, and negative if it is occupied by
a B monomer. The second factor is, again, a mean-field
counting of the geometrical packing of a polymer. Take
Fig. 2(c) as an example. This factor is 2 in P| because
a chain polymer whose end is at site 7 can go from site
7 to site 3, or to site 5, or to site 6, and only two of
them (site 7 to site 3 and site 7 to site 6) allow a switch-
ing. The same factor is % in Py because in this case the
packing pattern of a polymer is 3-7-5, or 3-7-6, or 5-7-
6, and only pattern 3-7-6 allows a switching. The third
factor is the probability of a given occupancy configura-
tion. The last factor is related to the Boltzmann factor in
the Monte Carlo updating rule, and is determined by the
occupancy configuration of sites 0,1,2,4,5, and 7 only.
This factor has only three possible forms: 1, u, and p2.
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It is worth noting that both P; and Py are independent
of the degree of polymerization N at this mean-field level
of approximation.

Combining these considerations, we now know that the
right hand side of Eq. (1) is a polynomial function of the
¢ (of degree seven, since the term containing a product
of eight ¢ vanishes by symmetry), a quadratic function
of p, and a linear function of %

While we now have in Eq. (1) a formal statement of
a dynamic equation for the local concentration ¢(z,y;t),
it is unfortunately too complicated to be solved analyt-
ically. However, an analysis of the local stability of the
uniform solution in which ¢ is equal to the constant p is
not beyond our reach.

IV. STABILITY ANALYSIS
AND THE SPINODAL CURVES

In this section we determine the spinodal curve by find-
ing the boundary of the region of stability of the solution
for which ¢ is constant. To this end, we perturb the
uniform solution in such a way that

p(z,y;t) = p+ee kR )teilkesthyy) (6)

where ¢ is a small perturbative variable, k; (k) is the
wave vector of the perturbative mode along the z (y)
direction, and 7(k;,ky) is the spectrum of decay rates
of the various modes. This spectrum is also a function
of the polymer concentration p, the Boltzmann factor pu,
and the degree of polymerization N. A stable uniform
solution then exists only within the region for which >
0. We now substitute Eq. (6) into Eq. (1), including all
diagrams but keep terms only up to the first order in
€. We find, after some lengthy computer-aided analytic
calculations, that

N(kz, ky) = (1 — cosk, cosky) [a(p, p, N)(cosk, + cosky) + b(p, p, N)] , (7

where

_ Zé _ 2.4 E _ 2,3 _ _1_
ol ) = 12 |50 -p9t+ -2 -

4 16 1
+p [3(1 -p)p*(2—4p+3p%) + S (1 —p)p*(3—8p+9p° — 3p3)—]

3

and is always negative, and

b(p,u,N) = p? [%(1 -p)?’p* + §(1 -p)’p°(2 —p)—ll\—,}

N

- [8(1 —p)P* (3 - 3p+p") + %(1 — p)p*(6 — 12p + 9p® — 2;03)%] (8)

4 16 1
+u[§(1 - p)p*(2 — 4p + 3p®) + 5 (1= p)p*(3 — 8p+ 9p® — 3p3)—ﬁ]

+ Epz(s —12p + 14p? — 12p® + 5p*)

8
+§p(6 — 18p + 30p? — 32p® + 20p* — 5p°)

] , (9)

2/~
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which is always positive within the physically meaningful
region of the parameter space.

The stability boundary is found by first finding the
minimum value of the spectrum with respect to the wave
vector, and then setting this minimum equal to zero.
When we exclude the case where k, = k, = 0, which
is forbidden by reason of the conservation of order pa-
rameter, we find the nontrivial result to be

b(p, Hy N) + 2a'(pa Ky N) =0, (10)

which determines a spinodal surface in the p-u-N pa-
rameter space. It is worth pointing out that the stabil-
ity boundary obtained in this discrete spatial formalism
yields the same results as that obtained in a continuum
spatial formalism because the first instability to occur as
the temperature is lowered is at vanishingly small k. It
is thus equivalent to expanding the right hand side of
the dynamic equation with respect to the lattice spacing
and keeping only terms up to second order. In this limit
the dynamic equation is, in a linear stability analysis,
a diffusion equation with a diffusion constant given by
b(p, #, N) + 2a(p, p, N).

We have plotted the spinodal curves in the y-p param-
eter space for various degrees of polymerization in Fig. 3.
We see that increasing the degree of polymerization N
decreases the local stability of the uniform phase, as is
the case in the Flory-Huggins mean-field theory. How-
ever, a qualitative difference appears at very low temper-
atures, where the Flory-Huggins theory predicts that a
uniform phase of the mixture is unstable at zero temper-
ature for all compositions p and degrees of polymeriza-
tion N, while our approach suggests the uniform phase
to be unstable only within part of the parameter space
at zero temperature. The reason for this discrepancy lies
in the phenomenon of “mobility freezing” that can occur

FIG. 3. The spinodal curves in the p — p plane for various
degrees of polymerization. From top to bottom, N is equal
to oo, 10, and 2, respectively.

at low temperatures in dynamic models, and which can
prevent the system from phase separating at large length
scales. When the polymer composition p is close to one
(or zero), phase separation from a uniform phase to two
phases requires a monomer (or polymer) to travel for a
longer distance than is the case when the composition is
near one-half. At zero temperature, any process that re-
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FIG. 4. This shows the variation of the wavelength Amu
of the most unstable mode in different situations: (a) as a
function of the inverse degree of polymerization —11.7 atp=0.5
and g = 0.2; (b) as a function of p at 4 = 0.2 and % = 0.1;
and (c) as a function of y at p = 0.5 and % =0.1.
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quires a monomer (or polymer) molecule to migrate for a
large distance through a region dominated by the other
species will essentially be eliminated, leaving the uniform
phase as the stable one. Flory-Huggins mean-field theory
does not involve local dynamics, and thus is not affected
by this consideration.

Next we consider the initial patterns resulting from
phase separation in the spinodal regime. These are deter-
mined by the wave vector for which the spectrum of n(k)
takes its most negative value. At the spinodal boundary
this wave vector is isotropic, but for a deeper quench we
find from Eq. (7) that the (1,0) and (0,1) directions are
favored, and that the corresponding wavelength is

2

b(p,u, N
—2a(p,u,N)

)‘mu(P» Ky N) =

. (11)
)

arccos (

We have plotted this wavelength for the most unstable
mode as a function of the different parameters while keep-
ing other parameters fixed in Fig. 4. From Eq. (10) we
find that this wavelength becomes infinite at the spinodal
boundary.

The approach described above can also be used to
investigate the phenomenon of polymerization-induced
phase separation [15,16] by applying the method to a
mixture of solvent monomers of type A and polymeriz-
able monomers of type B that undergo a process of poly-
merization on a time scale that is slow compared to the
diffusion process of the monomer. In this case there is a
probability Q(N,t) that a site known to be occupied by
polymer at time ¢ is occupied by one of degree of poly-
merization N. Then, in the derivation of the dynamic
Eq. (1), for a given degree N each contribution to the
time evolution of the local density of the polymers has
an additional factor Q(N,t), and there is a sum over N
from one to infinity. For N = 1 (the case of an unpoly-
merized binary mixture), we need a more appropriate
dynamics involving the local switching of a pair of differ-
ent monomers that are nearest neighbors. The dynamic
equation for N = 1 derived under this dynamics is differ-
ent from that obtained from Eq. (1) by setting N = 1. If
this difference is neglected, the polymerization-induced
phase separation can then be studied by using Eq. (1)
with 4 replaced by its average (1/N) with respect to
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the distribution Q(N,¢).

We have also studied the spinodal decomposition of a
one-dimensional binary mixture using the dynamics for
N =1 described above. In this case the mode spectrum
is given by

n(k) = 4][(1 — 2p + 2p?) — 2p(1 — p) cosk] sin’ g

+4p(1 — p)pusin®k | (12)

which is always positive. This indicates that the uniform
phase is always stable, as was to be expected [14].

V. CONCLUSIONS

In conclusion, we have developed a two-dimensional
lattice model to study the spinodal decomposition of a
mixture of monomers (of type A) and polymers (com-
posed of monomers of type B) with a degree of poly-
merization of N when there is an energy cost e for
each nearest-neighbor contact between monomer A and
monomer B. A dynamic mean-field theory has been
employed to generate the dynamic equation of the lo-
cal mean-field-like density of polymer by using a local
switching of monomer A and monomer B, while taking
into account the polymer character of monomers of type
B. The spinodal curves were obtained, and it was found
that increasing the degree of polymerization decreases
the local stability of a uniform phase of the mixture,
in agreement with the Flory-Huggins mean-field theory
[3,4]. However, at very low temperatures (for example, at
zero temperature), the prediction of our theory is quali-
tatively in disagreement with that of Flory and Huggins,
which predicts that the uniform phase of the mixture is
always unstable for all compositions p. We account for
this discrepancy in terms of the reduced mobility inher-
ent in the local switching dynamics in our model.
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